Light-dependent reactions are certain photochemical reactions involved in photosynthesis, the main process by which plants acquire energy. There are two light dependent reactions: the first occurs at Photosystem II and the second occurs at Photosystem I.
PSII absorbs a photon to produce a so-called high energy electron which transfers via an electron transport chain to cytochrome bf and then to PSI. The then-reduced PSI, absorbs another photon producing a more highly reducing electron, which converts NADP to NADPH. In oxygenic photosynthesis, the first electron donor is water, creating oxygen (O2) as a by-product. In anoxygenic photosynthesis, various electron donors are used.
Cytochrome b6f and ATP synthase work together to produce ATP (photophosphorylation) in two distinct ways. In non-cyclic photophosphorylation, cytochrome b6f uses electrons from PSII and energy from PSI to pump protons from the stroma to the Thylakoid lumen. The resulting proton gradient across the thylakoid membrane creates a proton-motive force, used by ATP synthase to form ATP. In cyclic photophosphorylation, cytochrome b6f uses electrons and energy from PSI to create more ATP and to stop the production of NADPH. Cyclic phosphorylation is important to create ATP and maintain NADPH in the right proportion for the light-independent reactions.
The net-reaction of all light-dependent reactions in oxygenic photosynthesis is:
PSI and PSII are light-harvesting complexes. If a special pigment molecule in a photosynthetic reaction center absorbs a photon, an electron in this pigment attains the excited state and then is transferred to another molecule in the reaction center. This reaction, called photoinduced charge separation, is the start of the electron flow and transforms light energy into chemical forms.
Electrons in pigment molecules can exist at specific energy levels. Under normal circumstances, they are at the lowest possible energy level, the ground state. However, absorption of light of the right photon energy can lift them to a higher energy level. Any light that has too little or too much energy cannot be absorbed and is reflected. The electron in the higher energy level is unstable and will quickly return to its normal lower energy level. To do this, it must release the absorbed energy. This can happen in various ways. The extra energy can be converted into molecular motion and lost as heat, or re-emitted by the electron as light (fluorescence). The energy, but not the electron itself, may be passed onto another molecule; this is called resonance energy transfer. If an electron of the special pair in the reaction center becomes excited, it cannot transfer this energy to another pigment using resonance energy transfer. Under normal circumstances, the electron would return to the ground state, but because the reaction center is arranged so that a suitable electron acceptor is nearby, the excited electron is taken up by the acceptor. The loss of the electron gives the special pair a positive charge and, as an ionization process, further boosts its energy. The formation of a positive charge on the special pair and a negative charge on the acceptor is referred to as photoinduced charge separation. The electron can be transferred to another molecule. As the ionized pigment returns to the ground state, it takes up an electron and gives off energy to the oxygen evolving complex so it can split water into electrons, protons, and molecular oxygen (after receiving energy from the pigment four times). Plant pigments usually utilize the last two of these reactions to convert the sun's energy into their own.
This initial charge separation occurs in less than 10 (10 seconds). In their high-energy states, the special pigment and the acceptor could undergo charge recombination; that is, the electron on the acceptor could move back to neutralize the positive charge on the special pair. Its return to the special pair would waste a valuable high-energy electron and simply convert the absorbed light energy into heat. In the case of PSII, this backflow of electrons can produce reactive oxygen species leading to photoinhibition. Three factors in the structure of the reaction center work together to suppress charge recombination nearly completely:
Thus, electron transfer proceeds efficiently from the first electron acceptor to the next, creating an electron transport chain that ends when it has reached NADPH.
The final product of PSII is plastoquinol, a mobile electron carrier in the membrane. Plastoquinol transfers the electron from PSII to the proton pump, cytochrome b6f. The ultimate electron donor of PSII is water. Cytochrome b6f transfers the electron chain to PSI through plastocyanin molecules. PSI can continue the electron transfer in two different ways. It can transfer the electrons either to plastoquinol again, creating a cyclic electron flow, or to an enzyme called FNR (Ferredoxin—NADP(+) reductase), creating a non-cyclic electron flow. PSI releases FNR into the stroma, where it reduces to NADPH.
Activities of the electron transport chain, especially from cytochrome b6f, lead to pumping of from the stroma to the lumen. The resulting transmembrane proton gradient is used to make ATP via ATP synthase.
The overall process of the photosynthetic electron transport chain in chloroplasts is:
Plastoquinol, in turn, transfers electrons to cyt bf, which feeds them into PSI.
using energy from P680. The actual steps of the above reaction possibly occur in the following way (Kok's diagram of S-states): (I) 2 (monoxide) (II) OH. (hydroxide) (III) (peroxide) (IV) (super oxide)(V) (di-oxygen). (Dolai's mechanism)
The electrons are transferred to special chlorophyll molecules (embedded in PSII) that are promoted to a higher-energy state by the energy of photons.
This is followed by the electron transfer P680 → pheophytin, and then on to plastoquinol, which occurs within the reaction center of PSII. The electrons are transferred to plastoquinone and two protons, generating plastoquinol, which released into the membrane as a mobile electron carrier. This is the second core process in photosynthesis. The initial stages occur within picoseconds, with an efficiency of 100%. The seemingly impossible efficiency is due to the precise positioning of molecules within the reaction center. This is a solid-state process, not a typical chemical reaction. It occurs within an essentially crystalline environment created by the macromolecular structure of PSII. The usual rules of chemistry (which involve random collisions and random energy distributions) do not apply in solid-state environments.
The emergence of such an incredibly complex structure, a macromolecule that converts the energy of sunlight into chemical energy and thus potentially useful work with efficiencies that are impossible in ordinary experience, seems almost magical at first glance. Thus, it is of considerable interest that, in essence, the same structure is found in purple bacteria.
The structure and function of cytochrome bf (in chloroplasts) is very similar to cytochrome bc1 ( Complex III in mitochondria). Both are transmembrane structures that remove electrons from a mobile, lipid-soluble electron carrier (plastoquinone in chloroplasts; ubiquinone in mitochondria) and transfer them to a mobile, water-soluble electron carrier (plastocyanin in chloroplasts; cytochrome c in mitochondria). Both are proton pumps that produce a transmembrane proton gradient. In fact, cytochrome b6 and subunit IV are homologous to mitochondrial cytochrome b and the Rieske iron-sulfur proteins of the two complexes are homologous. However, cytochrome f and cytochrome c1 are not homologous.
'''plastocyanin''' → '''P700''' → '''P700*''' → '''FNR''' → '''NADPH''' ↑ ↓ '''''bf''''' ← '''phylloquinone'''
PSI, like PSII, is a complex, highly organized transmembrane structure that contains antenna chlorophylls, a reaction center (P700), phylloquinone, and a number of iron-sulfur proteins that serve as intermediate redox carriers.
The light-harvesting system of PSI uses multiple copies of the same transmembrane proteins used by PSII. The energy of absorbed light (in the form of delocalized, high-energy electrons) is funneled into the reaction center, where it excites special chlorophyll molecules (P700, with maximum light absorption at 700 nm) to a higher energy level. The process occurs with astonishingly high efficiency.
Electrons are removed from excited chlorophyll molecules and transferred through a series of intermediate carriers to ferredoxin, a water-soluble electron carrier. As in PSII, this is a solid-state process that operates with 100% efficiency.
There are two different pathways of electron transport in PSI. In noncyclic electron transport, ferredoxin carries the electron to the enzyme ferredoxin reductase (FNR) that reduces to NADPH. In cyclic electron transport, electrons from ferredoxin are transferred (via plastoquinol) to a proton pump, cytochrome bf. They are then returned (via plastocyanin) to P700. NADPH and ATP are used to synthesize organic molecules from . The ratio of NADPH to ATP production can be adjusted by adjusting the balance between cyclic and noncyclic electron transport.
It is noteworthy that PSI closely resembles photosynthetic structures found in green sulfur bacteria, just as PSII resembles structures found in purple bacteria.
Unlike plants and algae, cyanobacteria are prokaryotes. They do not contain chloroplasts; rather, they bear a striking resemblance to chloroplasts themselves. This suggests that organisms resembling cyanobacteria were the evolutionary precursors of chloroplasts. One imagines primitive eukaryotic cells taking up cyanobacteria as intracellular symbionts in a process known as endosymbiosis.
'''''' → '''PSII''' → '''plastoquinol''' →''' ''b6f'' '''→ '''cytochrome ''c6'' '''→ '''PSI''' → '''ferredoxin''' → '''NADPH''' ↑ ↓ ''' ''b6f'' ''' ← '''plastoquinol'''
is, in essence, the same as the electron transport chain in chloroplasts. The mobile water-soluble electron carrier is cytochrome c6 in cyanobacteria, having been replaced by plastocyanin in plants.
Cyanobacteria can also synthesize ATP by oxidative phosphorylation, in the manner of other bacteria. The electron transport chain is
'''NADH dehydrogenase''' → '''plastoquinol''' →''' ''b6f'' '''→ '''cyt ''c6'' '''→ '''cyt ''aa3'' '''→ ''''''
where the mobile electron carriers are plastoquinol and cytochrome c6, while the proton pumps are NADH dehydrogenase, cyt b6f and cytochrome aa3 (member of the COX3 family).
Cyanobacteria are the only bacteria that produce oxygen during photosynthesis. Earth's primordial atmosphere was anoxic. Organisms like cyanobacteria produced our present-day oxygen-containing atmosphere.
The other two major groups of photosynthetic bacteria, purple bacteria and green sulfur bacteria, contain only a single photosystem and do not produce oxygen.
This is a cyclic process in which electrons are removed from an excited chlorophyll molecule ( bacteriochlorophyll; P870), passed through an electron transport chain to a proton pump (cytochrome bc1 complex; similar to the chloroplastic one), and then returned to the chlorophyll molecule. The result is a proton gradient that is used to make ATP via ATP synthase. As in cyanobacteria and chloroplasts, this is a solid-state process that depends on the precise orientation of various functional groups within a complex transmembrane macromolecular structure.
To make NADPH, purple bacteria use an external electron donor (hydrogen, hydrogen sulfide, sulfur, sulfite, or organic molecules such as succinate and lactate) to feed electrons into a reverse electron transport chain.
''' P840''' → '''P840*''' → '''ferredoxin''' → '''NADH''' ↑ ↓ '''cyt ''c553'' '''←''' ''bc1'' '''←''' menaquinol'''
There are two pathways of electron transfer. In cyclic electron transfer, electrons are removed from an excited chlorophyll molecule, passed through an electron transport chain to a proton pump, and then returned to the chlorophyll. The mobile electron carriers are, as usual, a lipid-soluble quinone and a water-soluble cytochrome. The resulting proton gradient is used to make ATP.
In noncyclic electron transfer, electrons are removed from an excited chlorophyll molecule and used to reduce NAD+ to NADH. The electrons removed from P840 must be replaced. This is accomplished by removing electrons from , which is oxidized to sulfur (hence the name "green sulfur bacteria").
Purple bacteria and green sulfur bacteria occupy relatively minor ecological niches in the present day biosphere. They are of interest because of their importance in precambrian ecologies, and because their methods of photosynthesis were the likely evolutionary precursors of those in modern plants.
|
|